情報数学 I
第九回 (2013年12月 6日)
半順序から群へ
From Half-Orders to Groups
Martin J. Dürst
http://www.sw.it.aoyama.ac.jp/2013/Math1/lecture9.html
© 2005-13 Martin
J. Dürst 青山学院大学
今日の予定
- 前回の残り (推移閉包)、復習と宿題
- 半順序、順序関係、全順序
- 代数系、群、対称群
前回の復習
A の中の関係 R
に対して次の性質がありうる:
- 反射的 (reflexive): xRx; x∈A ⇒
(x, x) ∈ R
- 対称的 (symmetric): xRy ⇒ yRx ; (x,
y) ∈ R ⇒ (y, x) ∈
R
- 反対称的 (antisymmetric): xRy ∧ yRx ⇒
x=y
- 推移的 (transitive): xRy ∧ yRz ⇒
xRz
関係の性質 (反射的、対称的、推移的、反対称的)
の有無の組合せを一つ一つ調べ、できるだけ小さい具体例
(例えば {a, b, c} の中の関係とか
{a, b, c, d}
の中の関係として) を作りなさい。
[本年度のために削除]
Partial Order
- If a relation is reflexive, antisymmetric, and transitive, then it is
called a partial order relation
- This is also often just called an order relation
- The set on which the relation is defined is called a partially
ordered set or just an ordered set
- The symbol ≤ is often used for order relations
- For any order relation ≤, the order relation ≥ and the relations >
and < are also defined
- In any order relation, two elements x and y can be
in any of four mutually exclusive relationships:
x < y, x = y, x
> y, or there is no relationship between x and
y
Examples of Order Relations
- The "divisible by" relation on the set of integers ≥1, or a subset
thereof
- The "subset" relation on a set of sets
Some examples need a careful definition:
- The relation on a set of tasks, where some tasks need be done before
or at the same time as others
- The relation "stronger or equal than" in a Tennis tournament,
defined by (the transitive closure of) the tournament results
Hasse Diagram
An order relation can be represented by a Hasse diagram.
How to convert a directed graph of an order relation to a Hasse diagram:
- Remove arrows that indicate reflexivity
- Rearange the vertices of the graph so that all arrows point upwards (or
downwards)
- Remove the arrows that can be reconstructed using transitive closure
- Remove the arrowheads
Example 1: The relation "divisible by" on the set {10, 5, 3, 2, 1}
Example 2: The relation "needs to be done before (or at the same time as)"
for the above tasks 1. to 4.
Equivalence Relations and Order Relations in Matrix Representation
- The elements in a set A are not ordered.
- Therefore, we can exchange (permute) the rows and the columns in the
matrix representation of a relation if and only if we use the same
permutation for both rows and columns.
- A relation on a set A is an equivalence relation if and only
if we can permute the rows and columns so that we obtain the following:
- The areas of 1s form squares.
- The centers of the squares are on the (main) diagonal of the
matrix.
- The squares don't overlap.
- The entries on the (main) diagonal are all 1.
- A relation on a set A is an order relation if and only if we
can permute the rows and columns so that we obtain the following:
- All entries below the (main) diagonal [or above] are 0.
- All entries on the (main) diagonal are 1.
全順序
ある集合 A の全ての元 a と b
に対して
a≥b 又はb≥a
が成り立つ場合、
≥ は全順序関係 (total order relation)
(あるいは線形順序関係 (linear order relation))
例: 整数、実数などの≥; 日付や時間;
辞書での単語の順番
代数系
(algebraic system)
- 集合が一つ (以上)
- その集合の元の間の演算が一つ以上
(結果もまたその集合の元)
- 公理が一つ以上
- 公理から演算の性質などが証明可能
代数系の例: 群
(group)
演算は二項演算「∘」一つ。公理:
- 結合律
- 単位元の存在
- 逆元 (inverse element) の存在
例: (Z; +), (R-{0}; ×), 対称群
(symmetric group)
対称群
- n 次対称群は n
個の要素の置き換えすべて
- 対称群の要素は 1..n の順列で表す
例: (2, 4, 1, 3) は (猫、犬、馬、牛) を
(犬、牛、猫、馬) に置き換える
- 対称群の二次演算は置き換えの連結
例: (2, 4, 1, 3) ∘ (1, 4, 2, 3) = (2, 3, 4,
1)
- 単位元は「何もしない」置き換え
例: (1, 2, 3, 4)
- 逆元: (2, 4, 1, 3) の逆元は (3, 1, 4,
2)
- 結合律は成立するが、交換律は成り立たない:
例: (2, 4, 1, 3) ∘ (1, 4, 2, 3) ≠
(1, 4, 2, 3) ∘ (2, 4, 1, 3)
代数系の例
- 可換群 (アベル群、Abelian group):
群に交換律を追
例: (Z; +), (R-{0}; ×)
- 半群 (semigroup): 結合律だけ、単位元と逆元なし
- 環 (ring):
加法と乗法という二つの演算があり、加法に対して可換群、乗法に対して半群、乗法は加法に対して分配可能
(例: 多項式環)
- 体 (field)
- 束 (lattice):
二つの演算に対して結合律と交換律、そしてお互いに吸収律が成り立つ
Glossary
- partial order
- 半順序
- partial order relation
- 半順序関係
- order relation
- 順序関係
- partially ordered set
- 半順序集合
- ordered set
- 順序集合
- mutually exclusive
- 相互排他的な
- Hasse diagram
- ハッセ図
- vertex (plural vertices)
- (グラフの) 節、頂点
- reconstruct
- 復元する
- square
- 正方形
- overlap
- 重なる、重複する